Repetitive Extragenic Palindromic (rep-PCR)

Highly-conserved repeated DNA elements

~ 500 copies of the REP consensus sequence in the E. coli chromosome.

rep-PCR 94.0°C Lyse cells **Amplify DNA** Three E. coli isolates from environment Stain DNA to give Run DNA on gel "fingerprint"

rep-PCR DNA Fingerprint

Fig. 7. Cluster analysis of REP-PCR genomic fingerprints of 38 (non specified) Xanthomonasstrains belonging to DNA homology groups 4 and 16 (Vauterin et al. 1995) using the product moment and UPGMA method.

rep-PCR

<u>Advantages</u>

- Highly reproducible
- Excellent discrimination

<u>Disadvantages</u>

- Knowledge of DNA sequence needed
- Amplifying errors

T-RFLP (terminal restriction fragment polymorphism)

PCR = polymerase chain reaction

Terminal Restriction Fragment Length Polymorphism (T-RFLP)

Advantages

<u>Disadvantages</u>

Does not require culturing

No library needed

Expensive equipment needed

Technically demanding

Pulse Field Gel Electrophoresis

Pulse Field Electrophoresis (PFGE)

Advantages

Used in genotyping and epidemiology

High discrimination

Reproducible

Conclusive results

Disadvantages

Long assay time
Limited Simultaneous
strains processing

Ribotyping

Run DNA on gel

Probe membrane with labeled DNA to give "fingerprint"

Ribotyping

Advantages

- Easy to type
- Highly reproducible
- Easy to perform
- Easy to interpret
- Easy to automate

Disadvantages

- Tedious
- Time-consuming
- Expensive

MST Methods Perception vs. Reality

- Great interest and need for a reliable molecular method for MST.
- Many methods being studied but none fulfills the need very well. Not ready for primetime!
- All potential MST molecular methods require well trained analysts, are technically challenging and are expensive.
- MST research needs are nearly overwhelming.

MST Methods Research Needs

- Host origin database
- Biogeographic variability
- Temporal variability
- Environmental factors (e.g., rainfall)
- Indicator organisms
- Automation